Bài viết này chúng ta sẽ tìm hiểu cách giải phương trình bậc hai chứa tham số trong môn Toán học, đây là một phần kiến thức quan trọng mà các học sinh cần nắm vững. Bài viết sẽ giúp các bạn ôn tập và hiểu rõ cách làm bài tập liên quan đến cách giải phương trình bậc hai chứa tham số.
A. Phương pháp giải
Dạng 3.1: Giải và biện luận phương trình theo tham số m
Phương pháp giải phương trình bậc hai chứa tham số m có dạng như sau:
Bước 1: Xác định các hệ số a, b, c (hoặc a, b', c).
Bước 2: Giải phương trình theo m:
- Với giá trị của m mà a = 0, giải phương trình bậc nhất.
- Với giá trị của m mà a ≠ 0, giải phương trình bậc hai: Tính Δ = b'2 - ac (hoặc Δ' = b2 - 4ac), xét các trường hợp của Δ chứa tham số và tìm nghiệm theo tham số.
Bước 3: Kết luận.
Biện luận phương trình:
- Phương trình có nghiệm khi:
- Với giá trị của m mà a = 0, phương trình bậc nhất có nghiệm.
- Với giá trị của m mà a ≠ 0, phương trình bậc hai có nghiệm.
- Phương trình có một nghiệm khi:
- Với giá trị của m mà a = 0, phương trình bậc nhất có nghiệm.
- Với giá trị của m mà a ≠ 0, phương trình bậc hai có nghiệm kép.
- Phương trình có hai nghiệm phân biệt khi: Giá trị của m mà a ≠ 0, phương trình bậc hai có hai nghiệm phân biệt.
Dạng 3.2: Xác định dấu các nghiệm của phương trình
Phương pháp giải dạng này giúp xác định dấu của các nghiệm của phương trình bậc hai chứa tham số m.
Bước 1: Xác định hệ số.
Bước 2: Tính Δ = b2 - 4ac (hoặc Δ' = b2 - 4ac) để kiểm tra phương trình có nghiệm hay không.
Bước 3: Trong trường hợp phương trình có nghiệm (Δ ≥ 0 hoặc Δ' ≥ 0), tính tổng S và tích P của hai nghiệm theo định lý Vi-ét để xét dấu các nghiệm của phương trình.
- Phương trình có hai nghiệm cùng dấu: P > 0.
- Phương trình có hai nghiệm dương.
- Phương trình có hai nghiệm âm.
- Phương trình có hai nghiệm trái dấu: P < 0.
Chú ý: Phương trình có hai nghiệm trái dấu chỉ cần xét P < 0 hoặc a.c < 0.
Bước 4: Kết luận.
Dạng 3.3: Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước
Phương pháp giải dạng này giúp tìm m để phương trình bậc hai chứa tham số có nghiệm thỏa mãn điều kiện cho trước.
Dạng 3.3.1: Tìm m để phương trình có nghiệm thỏa mãn điều kiện về dấu hoặc thỏa mãn đẳng thức, bất đẳng thức liên hệ giữa các nghiệm
Bước 1: Tìm điều kiện a ≠ 0 (nếu cần) và điều kiện để phương trình có nghiệm.
Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Vi-ét.
Bước 3: Sử dụng hệ thức Vi-ét, kết hợp biến đổi đẳng thức, bất đẳng thức để tìm tham số.
Bước 4: Đối chiếu điều kiện và kết luận.
Dạng 3.3.2: Tìm tham số m để phương trình có một nghiệm là x0
Bước 1: Thay giá trị x0 vào phương trình để tìm tham số.
Bước 2: Thay giá trị của tham số vào phương trình hoặc hệ thức Vi-ét để tìm nghiệm còn lại.
Bước 3: Kết luận.
Dạng 3.3.3: Tìm giá trị của tham số để hai phương trình có ít nhất một nghiệm chung
Bước 1: Tìm điều kiện để các phương trình có nghiệm.
Bước 2: Tìm nghiệm chung và tìm tham số: Có thể giả sử x0 là nghiệm chung, lập hệ phương trình hai ẩn (x0 và tham số) và giải hệ phương trình.
Bước 3: So sánh với điều kiện và kết luận.
B. Các ví dụ điển hình
Ví dụ 1: Giải phương trình x2 - 2x + 1 - m2 = 0 với m là tham số, m ≠ 0.
Lời giải: Chọn A
Ví dụ 2: Cho phương trình x2 + √7x + 1 = 0. Khẳng định nào sau đây là đúng?
Lời giải: Chọn B
Ví dụ 3: Số các giá trị nguyên của tham số m để phương trình x2 - 2x + m = 0 có hai nghiệm phân biệt x1; x2 sao cho x12.x22 ≤ 4 là:
Lời giải: Chọn B
Ví dụ 4: Phương trình bậc hai mx2 + (2m + 1)x + 3 = 0 có một nghiệm là x = -1. Giá trị của m và nghiệm còn lại là:
Lời giải: Chọn A
Ví dụ 5: Cho hai phương trình bậc hai x2 + 2x + m = 0 (1) và x2 + mx + 2 = 0 (2) (với m là tham số). Tìm m để hai phương trình có ít nhất một nghiệm chung.
Lời giải: Chọn B
C. Bài tập vận dụng
Bài 1: Cho phương trình bậc hai (m - 1)x2 - 2mx + m + 2 = 0 (với m là tham số). Giải phương trình trong trường hợp m < 2.
Lời giải: Chọn C
Bài 2: Cho m là số nguyên để phương trình 2x2 - 4x + m - 3 = 0 có hai nghiệm phân biệt cùng dấu. Giá trị của biểu thức là:
Lời giải: Chọn B
Bài 3: Phương trình 2x2 + (m - 1)x + 2m + 4 = 0 có một nghiệm bằng 5. Nghiệm còn lại của phương trình là:
Lời giải: Chọn B
Bài 4: Với giá trị nào của m thì hai phương trình x2 - mx + m + 1 = 0 (1) và x2 - (m - 2)x + m - 3 = 0 (2) có ít nhất một nghiệm chung ?
Lời giải: Chọn C
Bài 5: Giá trị nguyên dương của m để phương trình 2x2 - 4x + m = 0 có hai nghiệm dương phân biệt là:
Lời giải: Chọn D
Bài 6: Tìm giá trị của tham số m để phương trình 3x2 - 4x + m = 0 có hai nghiệm x1; x2 thỏa mãn 3x1 + 7x2 = 0.
Lời giải: Chọn A
Bài 7: Tìm m để phương trình x2 + (1 - 2m)x + 3m = 0 có hai nghiệm x1, x2 là độ dài hai cạnh của tam giác vuông có cạnh huyền là 5.
Lời giải: Chọn B
Bài 8: Cho phương trình (m - 1)x2 - 2mx + m - 4 = 0 (m là tham số, m ≠ 0). Gọi x1, x2 là hai nghiệm của phương trình. Giá trị của biểu thức A = 3(x1 + x2) + 2x1x2 - 8 là:
Lời giải: Chọn A
Bài 9: Cho phương trình bậc hai x2 - mx + m - 1 = 0 (với m là tham số). Gọi x1, x2 là hai nghiệm của phương trình. Tìm m để đạt giá trị lớn nhất.
Lời giải: Chọn D
Bài 10: Gọi x1, x2 là hai nghiệm của phương trình bậc hai -x2 - (m - 1)x + m2 + m - 2 = 0 (với m là tham số). Giá trị nhỏ nhất của biểu thức x12 + x22 là:
Lời giải: Chọn A
Đây là một số ví dụ về cách giải phương trình bậc hai chứa tham số. Hi vọng rằng bài viết đã giúp các bạn hiểu rõ hơn về cách giải và biện luận phương trình này.